

# Mathematics for Engineers

Pál Burai

## Complex numbers

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

## The imaginary unit

Let us solve the following equation:

$$x^2 + 1 = 0$$

## The imaginary unit

Let us solve the following equation:

$$x^2 + 1 = 0$$

---

The number which square is  $-1$  is called **imaginary unit** and it is denoted by  $i$ , in other words

$$i^2 = i \cdot i = -1.$$

## The imaginary unit

Let us solve the following equation:

$$x^2 + 1 = 0$$

The number which square is  $-1$  is called **imaginary unit** and it is denoted by  $i$ , in other words

$$i^2 = i \cdot i = -1.$$

## Algebraic form of complex numbers

Let  $a, b$  be real numbers, then

$$z = a + ib$$

is said to be a **complex number** in **algebraic form**, where  $a$  is the **real part** and  $b$  is the **imaginary part**. In notation:  $Re(z) = a$ ,  $Im(z) = b$ .

## The imaginary unit

Let us solve the following equation:

$$x^2 + 1 = 0$$

The number which square is  $-1$  is called **imaginary unit** and it is denoted by  $i$ , in other words

$$i^2 = i \cdot i = -1.$$

## Algebraic form of complex numbers

Let  $a, b$  be real numbers, then

$$z = a + ib$$

is said to be a **complex number** in **algebraic form**, where  $a$  is the **real part** and  $b$  is the **imaginary part**. In notation:  $Re(z) = a$ ,  $Im(z) = b$ .

The set of complex numbers is denoted by  $\mathbb{C}$ .

## Exercise

Solve the following equations, and plot the solutions on the complex plane!

(a)  $x^3 + 7x = 0,$

(b)  $x^2 - 2x + 5 = 0.$

## Exercise

Solve the following equations, and plot the solutions on the complex plane!

(a)  $x^3 + 7x = 0,$

(b)  $x^2 - 2x + 5 = 0.$

Calculation with complex numbers which are given in algebraic form

Let  $z = a + ib, w = u + iv$  be complex numbers, then

$$z + w = (a + u) + i(b + v), \quad z \cdot w = (au - bv) + i(av + bu).$$

## Exercise

Solve the following equations, and plot the solutions on the complex plane!

(a)  $x^3 + 7x = 0,$

(b)  $x^2 - 2x + 5 = 0.$

Calculation with complex numbers which are given in algebraic form

Let  $z = a + ib, w = u + iv$  be complex numbers, then

$$z + w = (a + u) + i(b + v), \quad z \cdot w = (au - bv) + i(av + bu).$$

## Exercise

Give the algebraic form of the following complex numbers:

(a)  $(2 - i)(2 + i), \quad (-2 - 5i)(5 - 2i), \quad (-1 - i)(1 + i)(7 + 6i),$

(b)  $\sqrt{2}i(1 + \sqrt{2}i), \quad (1 + i)^3, \quad i^9 + i^7 - i^4 + i^2 - i - 1, \quad i^{2017}.$

## Conjugate and multiplicative inverse of complex numbers

If  $z = a + ib$ , then the complex number

$$\bar{z} = a - ib$$

is called the **conjugate** of  $z$ .

## Conjugate and multiplicative inverse of complex numbers

If  $z = a + ib$ , then the complex number

$$\bar{z} = a - ib$$

is called the **conjugate** of  $z$ . If  $z \neq 0$ , then

$$\frac{1}{z} = z^{-1} = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2}$$

is the **multiplicative inverse** of  $z$ , in other words,  $z \cdot z^{-1} = 1$ .

## Conjugate and multiplicative inverse of complex numbers

If  $z = a + ib$ , then the complex number

$$\bar{z} = a - ib$$

is called the **conjugate** of  $z$ . If  $z \neq 0$ , then

$$\frac{1}{z} = z^{-1} = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2}$$

is the **multiplicative inverse** of  $z$ , in other words,  $z \cdot z^{-1} = 1$ .

### Exercise

Give the algebraic form of the following complex numbers:

(a)  $\overline{2-i}$ ,  $\overline{(-3+i)}(1+i)$ ,

(b)  $\frac{-3+3i}{1-i}$ ,  $\frac{1+i}{-i-3}$ .

## Absolute value and argument of a complex number

If  $z = a + ib$  is identified with the vector  $(a, b)$  on the plane, then according to the Pythagorean theorem the length of this vector is

$$|z| = \sqrt{a^2 + b^2},$$

which is called the **absolute value** of  $z$ .

## Absolute value and argument of a complex number

If  $z = a + ib$  is identified with the vector  $(a, b)$  on the plane, then according to the Pythagorean theorem the length of this vector is

$$|z| = \sqrt{a^2 + b^2},$$

which is called the **absolute value** of  $z$ . If  $z$  is different from zero, then the **argument** of  $z$  is the angle is the radius of the vector  $(a, b)$  with the positive real axis the angle  $(\varphi_z)$ . If  $a$  and  $b$  are positive, then

$$\tan \varphi_z = \frac{b}{a}.$$

The angle can be calculated similarly if  $a$  and/or  $b$  is non-negative.

The zero complex number has no argument!

## Absolute value and argument of a complex number

If  $z = a + ib$  is identified with the vector  $(a, b)$  on the plane, then according to the Pythagorean theorem the length of this vector is

$$|z| = \sqrt{a^2 + b^2},$$

which is called the **absolute value** of  $z$ . If  $z$  is different from zero, then the **argument** of  $z$  is the angle is the radius of the vector  $(a, b)$  with the positive real axis the angle  $(\varphi_z)$ . If  $a$  and  $b$  are positive, then

$$\tan \varphi_z = \frac{b}{a}.$$

The angle can be calculated similarly if  $a$  and/or  $b$  is non-negative.

The zero complex number has no argument!

If  $\varphi_z$  is the argument of  $z$  and  $|z|$  its length, then it can be written in the form

$$z = |z|(\cos \varphi_z + i \sin \varphi_z),$$

which is called the **polar form** of  $z$ .

## Exercise

Give the polar form of the following complex numbers!

(a)  $1,$

(b)  $i,$

(c)  $1 - i,$

(d)  $-1 - \sqrt{3}i,$

## Exercise

Give the polar form of the following complex numbers!

(a)  $1$ , (b)  $i$ , (c)  $1 - i$ , (d)  $-1 - \sqrt{3}i$ ,

Calculation with complex numbers given in polar form

If  $z = |z|(\cos \varphi_z + i \sin \varphi_z)$  and  $w = |w|(\cos \varphi_w + i \sin \varphi_w)$ , then

$$z \cdot w = |z||w|(\cos(\varphi_z + \varphi_w) + i \sin(\varphi_z + \varphi_w)).$$

If  $w \neq 0$ , then

$$\frac{z}{w} = \frac{|z|}{|w|}(\cos(\varphi_z - \varphi_w) + i \sin(\varphi_z - \varphi_w)).$$

## Exercise

Let us consider  $x = 2 \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$  and  $y = 11 \left( \cos \frac{\pi}{7} + i \sin \frac{\pi}{7} \right)$ .

Determine the value of the following expressions!

- (a)  $xy$ ,
- (b)  $xy^{-1}$ ,
- (c)  $x^3$ ,
- (d)  $y^5$ ,
- (e)  $\frac{1}{x}$ ,

## Exercise

Let us consider  $x = 2 \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$  and  $y = 11 \left( \cos \frac{\pi}{7} + i \sin \frac{\pi}{7} \right)$ .

Determine the value of the following expressions!

(a)  $xy$ , (b)  $xy^{-1}$ , (c)  $x^3$ , (d)  $y^5$ , (e)  $\frac{1}{x}$ ,

## *n*th roots of a complex number.

If  $z = |z|(\cos \varphi_z + i \sin \varphi_z)$  is a given complex number and  $n$  is a given natural number, then the equation  $\zeta^n = z$  has  $n$  different complex solutions, which are called the ***n*th roots of  $z$** . They can be expressed in the following way:

$$\zeta_k = \sqrt[n]{|z|} \left( \cos \frac{\varphi_z + 2k\pi}{n} + i \sin \frac{\varphi_z + 2k\pi}{n} \right), \quad k = 0, 1, \dots, n-1.$$

## Exercise

Let us consider  $x = 2 \left( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$  and  $y = 11 \left( \cos \frac{\pi}{7} + i \sin \frac{\pi}{7} \right)$ .

Determine the value of the following expressions!

(a)  $xy$ , (b)  $xy^{-1}$ , (c)  $x^3$ , (d)  $y^5$ , (e)  $\frac{1}{x}$ ,

## *n*th roots of a complex number.

If  $z = |z|(\cos \varphi_z + i \sin \varphi_z)$  is a given complex number and  $n$  is a given natural number, then the equation  $\zeta^n = z$  has  $n$  different complex solutions, which are called the ***n*th roots of  $z$** . They can be expressed in the following way:

$$\zeta_k = \sqrt[n]{|z|} \left( \cos \frac{\varphi_z + 2k\pi}{n} + i \sin \frac{\varphi_z + 2k\pi}{n} \right), \quad k = 0, 1, \dots, n-1.$$

## Exercise

Calculate the second, the third and the fourth roots of the complex number  $z = 128 \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$ ! Plot the roots on the complex plain!



## Euler's formula

$$e^{i\varphi} = \cos \varphi + i \sin \varphi.$$

## Euler's formula

$$e^{i\varphi} = \cos \varphi + i \sin \varphi.$$

## Exponential form of complex numbers

If the polar form of a complex number is  $z = |z|(\cos \varphi + i \sin \varphi)$ , then the form

$$z = |z|e^{i\varphi}$$

is called the **exponential form of  $z$** .

## Euler's formula

$$e^{i\varphi} = \cos \varphi + i \sin \varphi.$$

## Exponential form of complex numbers

If the polar form of a complex number is  $z = |z|(\cos \varphi + i \sin \varphi)$ , then the form

$$z = |z|e^{i\varphi}$$

is called the **exponential form of  $z$** .

## Multiplication and division in exponential form

Let  $z = |z|e^{i\varphi}$  and  $w = |w|e^{i\psi}$ , then

$$zw = |z||w|e^{i(\varphi+\psi)}, \quad \text{and} \quad \frac{z}{w} = \frac{|z|}{|w|}e^{i(\varphi-\psi)}.$$

## Raising to a power in exponential form

$$z^n = |z|^n e^{in\varphi}.$$

## Raising to a power in exponential form

$$z^n = |z|^n e^{in\varphi}.$$

## Periodicity

$$|z|e^{i\varphi} = |z|e^{i(\varphi+2\pi)}$$

## Raising to a power in exponential form

$$z^n = |z|^n e^{in\varphi}.$$

## Periodicity

$$|z|e^{i\varphi} = |z|e^{i(\varphi+2\pi)}$$

## Exercises

Calculate the product  $zw$  and the ratio  $\frac{z}{w}$ !

- $z = 2e^{i\frac{\pi}{2}}, w = 4e^{i\frac{\pi}{4}}$ .
- $z = -3e^{i10}, w = 3e^{-i10}$ .
- $z = \sqrt{2}e^{i\frac{\pi}{3}}, w = \sqrt{18}e^{i\frac{\pi}{6}}$ .

## Raising to a power in exponential form

$$z^n = |z|^n e^{in\varphi}.$$

## Periodicity

$$|z|e^{i\varphi} = |z|e^{i(\varphi+2\pi)}$$

## Exercises

Calculate the product  $zw$  and the ratio  $\frac{z}{w}$ !

- $z = 2e^{i\frac{\pi}{2}}, w = 4e^{i\frac{\pi}{4}}$ .
- $z = -3e^{i10}, w = 3e^{-i10}$ .
- $z = \sqrt{2}e^{i\frac{\pi}{3}}, w = \sqrt{18}e^{i\frac{\pi}{6}}$ .

## Exercises

Calculate the  $n$ th power of  $z$ !

- $z = \sqrt[3]{5}e^{i\frac{\pi}{6}}, n = 3$ .
- $z = 2e^{i\frac{\pi}{5}}, n = 5$ .
- $z = e^{i\frac{\pi}{5}}, n = 10$ .



## Exercises

- Plot the following complex numbers on the complex plane!  
Determine the real and imaginary parts of them!  $z_1 = 2 + 3i$ ,  
 $z_2 = -10 + 2i$ ,  $z_3 = 10 + 2i$ ,  $z_4 = 2 - 3i$ ,  $z_5 = -2 - 3i$ .
- Using Euler's formula, compute  $\cos \varphi$  and  $\sin \varphi$  and convert to algebraic form the following complex numbers!  $e^{i\pi}$ ,  $e^{i\frac{\pi}{3}}$ .
- Transform the complex number  $z_1 = 1 - i$  into polar, and exponential form. Calculate its fourth power!
- Determine the real and imaginary parts of  $\frac{(1+i)^2}{\sqrt{2}(1-i)}$ !
- Evaluate the roots of the following quadratic equations:
  - $x^2 + 4x + 13$ .
  - $x^2 + \frac{3}{2}x + \frac{25}{16}$ .
- Give the exponential form of the third, fourth and fifth roots of unity!